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1 Summary
The detection and classification of animal footprints has a crucial application in wildlife monitoring, as one of
the only truly noninvasive techniques [1]. Thus far, classification of footprints has been restricted to species
classification by eye and relatively labor intensive individual animal classification through an algorithm that
works off of human entered landmark points [2]. Automating a system to detect species and/or individuals
would increase monitoring capability and reduce necessary training requirements to be able to monitor
animals in a noninvasive way. Our system uses a combination of a relatively automated image processing
system and principal component analysis to determine the species of an animal from its footprint. Despite
having a high level of accuracy on the species level, the algorithm is not consistent at identifying individuals.
Future iterations of this system could make the entire image processing process automated, and also increase
the algorithm’s ability to determine individual animals accurately.

2 Introduction
The concept of using footprints to monitor wild animals is a useful noninvasive method of keeping track of
a population. Footprints are relatively easy to find in most places and taking images of footprints requires
relatively little technology when compared to GPS or aerial tracking. This concept can hugely benefit
reserves and parks looking to keep track of endangered species, but could also potentially be exploited by
illegal poaching to identify animals.

The algorithm is designed to identify species (and potentially individuals) of animals by their footprints.
This works using principal component analysis (PCA), by taking each image and converting it into a vector.
When all the images have been compiled into a matrix, the system identifies the x principal eigenvectors,
and uses these to calculate the closest match to each image in the training set using the “nearest neighbor”
approach. The system can then identify what species the footprint comes from based on the species of the
closest match.

This could be used to identify animal species in the wild, or to help track individual animals outside
of captivity. The ability to track animals in this passive way (without chips, tags, or GPS) could be a lot
healthier for the animals as well as allow more amateur trackers to help keep tabs on endangered species.
However, if these photos are geotagged and published, poachers and others with malicious intent could more
easily find and hurt the wildlife.

More broadly, we are exploring the ability of Principal Component Analysis based recognition technology
to differentiate and categorize animals by their footprint. On a deeper level, we are determining the accuracy
with which footprints can be linked back to the individual using this method.

3 Methods
Our method relies on a combination of manual and automated image processing and principal component
analysis (PCA) to standardize footprint images and classify them into species and individual. The first step
in image standardization is to crop each image such that the edges of the footprint touch the four edges of
the cropped image. The images are then converted to grayscale and have their shortest side stretched to be
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Figure 1: These are examples of the 64 by 64 pixel images (before mean-centering)
that we fed into MATLAB. We used the footprints of three species of big cats: Bengal
Tigers, Cheetahs, and Leopards, and multiple images of footprints for each of five
captive individuals (named above) of each species.

the same length as their longer side. These square images are then exported at 64 by 64 pixel resolution and
8 bit-depth for use in MATLAB.

After the images have been standardized, they are added to one of two folders: one for a ‘test’ data set
which consists of images that are effectively unknowns and must be classified and another folder for ‘training’
images which are known and can be compared to the test images to classify the test images.

An initial function in MATLAB takes each folder in turn and vectorizes the images, turning them into a
n × 1 matrix where n is the total number of pixels in each image, so that each image is stored in a single
column. Then the images are appended into a matrix which is of size n × m where m is the number of
images in the folder. All the data is mean-centered, where the mean of the data is subtracted from each
value so that the mean now lies at 0. The covariance matrix is then found, where:

if A is a the n× m matrix of vectorized images, the n× n covarience matrix C is calculated by

C = ATA

This creates a symmetric matrix with comparisons between each pixel of each image. Once this is done,
it is simple to find the eigenvectors, which represent the most significant variation trends in the pixels. The
x number of eigenvalues with the largest respective eigenfaces are the principal components, which are then
used to compare the test and training data sets. Each image vector is simplified (compressed) so that it is
a representation of the principal components. Since there are x principal components, each image is now
represented by x values. Our method uses from 6-10 principal components, so this simplifies each image
immensely.

Once all the images are compressed in this way, they can be compared using the nearest neighbor
algorithm, which calculates the closest image vector from the training set to any given image vector from
the unknown set, using the principal components as the dimensions. Once the closest match has been found,
the known data from the closest match is used to classify the unknown.
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Figure 2: Our method can be briefly described through this block diagram. Within the
grey boxes labelled Image Standardization and Principle Component Analysis are processes
we performed on both the training and testing data sets. The dark grey blocks with
white text represent the correct manual categorization data for the corresponding data
sets, such as Species: Cheetah, Individual Named: Aiko. Dashed lines and block-frames
represent steps completed when analyzing the algorithm (when one knows the correct
categorization of footprints) but skipped if one were using this algorithm on unknown
data.

4 Detailed Findings

Figure 3: When identifying individual cheetahs within a cheetah-only data
set, 10 to 12 eigenvectors seemed to be the ideal number to use for PCA.
Information and related data collected about different groups of animals
helped decide the number of eigenvectors used in our subsequent simulations.

After image sorting and standardization, our combined data sets included a total of around 100 images
from 3 different animals: Bengal Tiger, Cheetah, and Leopard. Each of these species included 5 individuals
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with between 3 and 8 images per individual. When we used around a third of the data as test and the rest
as training data (chosen arbitrarily, but making sure there were at least 2 prints of each animal left in the
training set) the species accuracy was around 90 percent and the individual accuracy was close to 50 percent.
The more prints in the training set, (and consequently less in the test) the higher the individual accuracy.
At one fifth of the footprints as test images (20:80), the species accuracy remained around 90 percent but
the individual accuracy jumped to 80 percent. This is indicates that individual accuracy is heavily reliant
on number of images to compare to.

This is not a surprising result, and is actually relatively high considering that it can be challenging to
visually differentiate the footprint. The lack of individual accuracy could be attributed to the relatively
small number of footprints per individual animal, as there were only about 100 images spread among 15
individuals. With a larger data set, the accuracy of determining individuals could potentially be much higher.
This system, in its current iteration, is probably not a huge improvement on current and existing systems as
it still requires some human interaction to process the images. However, it demonstrates the ability of PCA
to identify species and potentially individual animals and provides an encouraging outlook on the ability of
this method to supplant other manual and computer-aided animal-footprint identification methods.

Figure 4: These two graphs of accuracy with a varying number of nearest neighbors
considered indicates two primary things. 1) Pre-sorting by species before calculating
the relevant eigenvectors seems to dramatically increase individual identification accu-
racy (a jump from 28 to 55 percent just by removing one species). This supposition
is further supported by the 60 percent accuracy shown for individual identification for
only one species in Figure 3. 2) Taking the mode of an increasing number of nearest
neighbors (as opposed to simply using the categorization of the first nearest neighbor)
seemed to dramatically reduce accuracy rather than make the program more consistent.

5 Recommendations
5.1 For use:
Identifying animal species from their footprints can be accomplished with PCA – a human with enough
training can also do it – but identifying individuals is far harder. This can primarily be attributed to the
fact that there are clear differences between footprints of species (as you would expect) but the differences
between individuals of the same species are much subtler.

We know that it is possible for a combination of human and computer systems to identify individuals, as
Wildtrack is able to do this with over 95 percent accuracy [3]. However, this system is both labor intensive
and requires extensive training to use the system. If a combination of automated image processing and PCA
could identify individuals, the work of identifying and monitoring endangered animals could be simplified
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Figure 5: While a more suitable user interface should be implemented for field use, the
MATLAB cell-array output can display the raw identification the program performs.
The first row represents the name of the image being compared, and the second two
rows represent the algorithm’s categorization based on its calculation of the nearest
neighbor.

and sped up drastically.
The primary steps to automation are 1) making the image processing automatic, by finding a way to

create a bounding box around the footprint automatically and cropping it, and 2) improving the current
PCA method to successfully identify individuals with high accuracy.

5.2 For improvement:
We propose that improving our standardization procedure for paw-print images could improve the accuracy
of individual-print recognition. As the MATLAB algorithm does not consider the possible rotation of the
footprints in its comparison, we would rotate each image to a particular landmark direction. For example,
prints of the above general shape (that of a big cat) would be rotated such that the second toe centered at
the top of of the crop. This should ensure that multiple footprints of the same individual are oriented the
same way in each image.

Figure 6: The red and yellow dots in the cropping images above mark the locations
where the edges of the footprint touch the edges of the crop. The image on the left is
an example of the current cropping method - an arbitrarily upright view of the print,
and the image on the right is an example of the proposed cropping method, with the
second toe centered on the top edge of the crop (represented by the yellow dot).

6 References
Wildtrack.org

[1] wildtrack.org/why-non-invasive-2
[2] wildtrack.org/how-fit-works
[3] wildtrack.org/10-reasons-to-use-fit
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7 Appendix
Find the code and images at github.com/julesbrettle/footprint-id-project.

1 % Identifying Footprints Using Principle Component Analysis
2 % J. Brettle and T. Jewell-Alibhai
3 % 2020-03-02
4

5 clear all;
6

7 % function dir2matrix takes an input directory and locates all
8 % images with a .jpg extension. It then takes the images, vectorizes
9 % them and then grayscales them for use with PCA, adding them to a

10 % matrix.
11 [train, train_validate] = dir2matrix('footprint_images');
12 [test, test_validate] = dir2matrix('footprint_images\Test');
13 numeigs = 12; %number of eigenvectors to use in PCA
14

15 [NN_S, NN_ID] = nearestNeighbors(numeigs,train,test,train_validate,test_validate);
16

17 % rowMode() converts vertical cell array to horizontal
18 NN_S = rowMode(NN_S);
19 NN_ID = rowMode(NN_ID);
20 NN_R = [NN_S'; NN_ID'];
21

22 result = vertcat(test_validate,NN_R)
23

24

25 function [mydata, myvalidate] = dir2matrix(Dir)
26 % function dir2matrix takes an input directory and locates all
27 % images with a .jpg extension. It then takes the images, vectorizes
28 % them and then grayscales them for use with PCA, adding them to a
29 % matrix.
30 jpegFiles = dir(fullfile(Dir,'*.jpg'));
31 numfiles = length(jpegFiles);
32 width = size(imread(fullfile(Dir,jpegFiles(1).name)),1);
33 height = size(imread(fullfile(Dir,jpegFiles(1).name)),2);
34 mydata = zeros(width*height, numfiles);
35

36 for k = 1:numfiles
37 F = fullfile(Dir,jpegFiles(k).name);
38 temp1 = rgb2gray(double(imread(F))./255);
39 %imagesc(temp1);
40 temp2 = imresize(temp1,[width*height,1]);
41 mydata(:,k) = temp2;
42 end
43

44 myvalidate = cell(2,numfiles);
45

46 for z = 1:numfiles
47 if(length(strfind(jpegFiles(z).name,'C_')) > 0)
48 myvalidate(1,z) = {'Cheetah'};
49 elseif(length(strfind(jpegFiles(z).name,'BT_')) > 0)
50 myvalidate(1,z) = {'Bengal Tiger'};
51 elseif(length(strfind(jpegFiles(z).name,'WR_')) > 0)
52 myvalidate(1,z) = {'White Rhino'};
53 elseif(length(strfind(jpegFiles(z).name,'P_')) > 0)
54 myvalidate(1,z) = {'Puma'};
55 elseif(length(strfind(jpegFiles(z).name,'L_')) > 0)
56 myvalidate(1,z) = {'Leopard'};
57 end
58

59 temp1 = string(extractBetween(jpegFiles(z).name,"_"," ("));
60 myvalidate(2,z) = {temp1(1)};
61 end
62 end
63

64 function [NN_S, NN_ID] = nearestNeighbors(numPrincipalComponents , train, test, trainV, testV)
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65

66 ATrain = train';
67 ATest = test';
68

69 % mean center the train and test data
70 ATrain = ATrain - mean(ATrain);
71 ATest = ATest - mean(ATest);
72

73 % get covariance matrix of the training data
74 covar = ATrain'*ATrain;
75

76 % if you wan to just get the eigenvectors with largest eigenvalues
77 % you can use eigs. Delta (diagonalized eigenvalues) is not used here.
78 [Q, Delta] = eigs(covar, numPrincipalComponents);
79

80 % project into face space
81 faceSpaceTrain = Q'*ATrain';
82 faceSpaceTest = Q'*ATest';
83

84 % Use nearest neighbor search (you can code this manually if you'd like)
85 NN = knnsearch(faceSpaceTrain', faceSpaceTest', 'K',1);
86 NN_S = cell(size(NN));
87 NN_ID = cell(size(NN));
88 for x = 1:size(NN,1)
89 NN_S(x,1:size(NN,2)) = trainV(1,NN(x,:));
90 end
91 for y = 1:size(NN,1)
92 NN_ID(y,1:size(NN,2)) = cellstr(string(trainV(2,NN(y,:))));
93 end
94 end
95

96 function a = rowMode(matrix)
97 % rowMode() converts vertical cell array to horizontal
98 a = cell([size(matrix,1) 1]);
99 for x = 1:size(matrix,1)

100 y = unique(matrix(x,:));
101 n = zeros(length(y), 1);
102 for iy = 1:length(y)
103 n(iy) = length(find(strcmp(y{iy}, matrix(x,:))));
104 end
105 [~, itemp] = max(n);
106 a(x,:) = y(itemp);
107 end
108 a;
109 end
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